首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5860篇
  免费   916篇
  国内免费   940篇
测绘学   38篇
大气科学   223篇
地球物理   427篇
地质学   3583篇
海洋学   360篇
天文学   2280篇
综合类   217篇
自然地理   588篇
  2024年   14篇
  2023年   48篇
  2022年   126篇
  2021年   147篇
  2020年   132篇
  2019年   179篇
  2018年   160篇
  2017年   159篇
  2016年   172篇
  2015年   201篇
  2014年   252篇
  2013年   248篇
  2012年   279篇
  2011年   296篇
  2010年   237篇
  2009年   492篇
  2008年   396篇
  2007年   493篇
  2006年   468篇
  2005年   453篇
  2004年   417篇
  2003年   398篇
  2002年   337篇
  2001年   278篇
  2000年   278篇
  1999年   224篇
  1998年   222篇
  1997年   111篇
  1996年   67篇
  1995年   94篇
  1994年   71篇
  1993年   57篇
  1992年   61篇
  1991年   29篇
  1990年   31篇
  1989年   34篇
  1988年   20篇
  1987年   10篇
  1986年   10篇
  1985年   4篇
  1984年   5篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1954年   1篇
排序方式: 共有7716条查询结果,搜索用时 375 毫秒
941.
942.
To date, two planetary systems have been discovered with close-in, terrestrial-mass planets     . Many more such discoveries are anticipated in the coming years with radial velocity and transit searches. Here we investigate the different mechanisms that could form 'hot Earths' and their observable predictions. Models include: (1) in situ accretion; (2) formation at larger orbital distance followed by inward 'type 1' migration; (3) formation from material being 'shepherded' inward by a migrating gas giant planet; (4) formation from material being shepherded by moving secular resonances during dispersal of the protoplanetary disc; (5) tidal circularization of eccentric terrestrial planets with close-in perihelion distances and (6) photoevaporative mass-loss of a close-in giant planet. Models 1–4 have been validated in previous work. We show that tidal circularization can form hot Earths, but only for relatively massive planets     with very close-in perihelion distances (≲0.025 au), and even then the net inward movement in orbital distance is at most only 0.1–0.15 au. For planets of less than     , photoevaporation can remove the planet's envelope and leave behind the solid core on a Gyr time-scale, but only for planets inside 0.025–0.05 au. Using two quantities that are observable by current and upcoming missions, we show that these models each produce unique signatures, and can be observationally distinguished. These observables are the planetary system architecture (detectable with radial velocities, transits and transit timing) and the bulk composition of transiting close-in terrestrial planets (measured by transits via the planet's radius).  相似文献   
943.
944.
We combine N -body simulations of structure growth with physical modelling of galaxy evolution to investigate whether the shift in cosmological parameters between the first- and third-year results from the Wilkinson Microwave Anisotropy Probe ( WMAP ) affects predictions for the galaxy population. Structure formation is significantly delayed in the WMAP3 cosmology, because the initial matter fluctuation amplitude is lower on the relevant scales. The decrease in dark matter clustering strength is, however, almost entirely offset by an increase in halo bias, so predictions for galaxy clustering are barely altered. In both cosmologies, several combinations of physical parameters can reproduce observed, low-redshift galaxy properties; the star formation, supernova feedback and active galactic nucleus feedback efficiencies can be played off against each other to give similar results. Models which fit observed luminosity functions predict projected two-point correlation functions which scatter by about 10–20 per cent on large scale and by larger factors on small scale, depending both on cosmology and on details of galaxy formation. Measurements of the pairwise velocity distribution prefer the WMAP1 cosmology, but careful treatment of the systematics is needed. Given present modelling uncertainties, it is not easy to distinguish between the WMAP1 and WMAP3 cosmologies on the basis of low-redshift galaxy properties. Model predictions diverge more dramatically at high redshift. Better observational data at   z > 2  will better constrain galaxy formation and perhaps also cosmological parameters.  相似文献   
945.
946.
We present results from a survey of the Rosette Molecular Cloud (RMC) using both the Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) onboard the Spitzer Space Telescope . We have mapped a region of active star formation covering an area approximately 1° by 1.5° including several previously known clusters. Spectral energy distributions (SEDs) fitted to our data combined with that from Two Micron All Sky Survey (2MASS) are used to identify young stellar objects (YSOs) with infrared (IR) excesses. We find that roughly 50 per cent of the sources are forming in clustered environments and identify seven clusters of IR excess sources including four that were previously unknown. We investigate evidence for triggering of star formation due to the ionization front, identified in Brackett-α emission, associated with the young open cluster NGC 2244. Although the position of several of the clusters of IR excess sources are coincident with the ionization front, the bulk of the youngest YSOs are located far from the ionization front, in clusters located along the mid-plane of the cloud. We conclude that although triggering from the H  ii nebula is a possible origin for some of the recent star formation, the majority of the active star formation is occurring in already dense regions of the cloud not compressed by the expansion of the H  ii region.  相似文献   
947.
948.
949.
We investigate the orbital evolution of planetesimals in a self-gravitating circumstellar disc in the size regime (∼1–5000 km) where the planetesimals behave approximately as test particles in the disc's non-axisymmetric potential. We find that the particles respond to the stochastic, regenerative spiral features in the disc by executing large random excursions (up to a factor of 2 in radius in ∼1000 yr), although typical random orbital velocities are of the order of one tenth of the Keplerian speed. The limited time frame and small number of planetesimals modelled do not permit us to discern any net direction of planetesimal migration. Our main conclusion is that the high eccentricities (∼0.1) induced by interaction with spiral features in the disc is likely to be highly unfavourable to the collisional growth of planetesimals in this size range while the disc is in the self-gravitating regime. Thus if , as recently argued by Rice et al., the production of planetesimals gets under way when the disc is in the self-gravitating regime (either at smaller planetesimal size scales, where gas drag is important, or via gravitational fragmentation of the solid component), the planetesimals thus produced would not be able to grow collisionally until the disc ceases to be self-gravitating. It is unclear, however, given the large amplitude excursions undergone by planetesimals in the self-gravitating disc, whether they would be retained in the disc throughout this period, or whether they would instead be lost to the central star.  相似文献   
950.
This is the first paper of a series focused on investigating the star formation and evolutionary history of the two early-type galaxies NGC 1407 and NGC 1400. They are the two brightest galaxies of the NGC 1407 (or Eridanus-A) group, one of the 60 groups studied as part of the Group Evolution Multi-wavelength Study.
Here, we present new high signal-to-noise ratio long-slit spectroscopic data obtained at the ESO 3.6-m telescope and high-resolution multiband imaging data from the Hubble Space Telescope /Advanced Camera for Surveys and wide-field imaging from Subaru Suprime-Cam. We spatially resolved integrated spectra out to ∼0.6 (NGC 1407) and ∼1.3 (NGC 1400) effective radii. The radial profiles of the kinematic parameters v rot, σ, h 3 and h 4 are measured. The surface brightness profiles are fitted to different galaxy light models and the colour distributions analysed. The multiband images are modelled to derive isophotal shape parameters and residual galaxy images. The parameters from the surface brightness profile fitting are used to estimate the mass of the possible central supermassive black hole in NGC 1407. The galaxies are found to be rotationally supported and to have a flat core in the surface brightness profiles. Elliptical isophotes are observed at all radii and no fine structures are detected in the residual galaxy images. From our results, we can also discard a possible interaction between NGC 1400, NGC 1407 and the group intergalactic medium. We estimate a mass of  ∼1.03 × 109 M  for the supermassive black hole in NGC 1407 galaxy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号